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Abstract

This paper presents an efficient adaptive mesh redistribution method to solve a non-linear Dirac (NLD) equation. Our
algorithm is formed by three parts: the NLD evolution, the iterative mesh redistribution of the coarse mesh and the local
uniform refinement of the final coarse mesh. At each time level, the equidistribution principle is first employed to iteratively
redistribute coarse mesh points, and the scalar monitor function is subsequently interpolated on the coarse mesh in order
to do one new iteration and improve the grid adaptivity. After an adaptive coarse mesh is generated ideally and finally,
each coarse mesh interval is equally divided into some fine cells to give an adaptive fine mesh of the physical domain,
and then the solution vector is remapped on the resulting new fine mesh by an affine method. The NLD equation is finally
solved by using a high resolution shock-capturing method on the (fixed) non-uniform fine mesh.

Extensive numerical experiments demonstrate that the proposed adaptive mesh method gives the third-order rate of
convergence, and yields an efficient and fast NLD solver that tracks and resolves both small, local and large solution gra-
dients automatically.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Ever since its invention in 1929 the Dirac equation has played a fundamental role in various areas of
modern physics and mathematics, and is important for the description of interacting particles and fields.
In past three decades, several authors have committed themselves to analytically investigating the non-lin-
ear Dirac (NLD) model, see [4,6–8,31,32] and references therein. Some reliable, higher-order accurate
numerical methods have also been constructed to solve the NLD model. They are Crank–Nicholson type
schemes [3,5], split-step spectral schemes [17], Legendre rational spectral methods [46], multi-symplectic
Runge–Kutta methods [22], and Runge–Kutta discontinuous Galerkin (RKDG) methods [35], etc. The
interaction dynamics for the one-humped Dirac solitary waves were investigated in [5] by using a
0021-9991/$ - see front matter � 2006 Elsevier Inc. All rights reserved.
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second-order accurate difference scheme. The weakly inelastic interaction in ternary collisions is first
reported in [35]. In [36,37], the second author and his co-worker further observed the strong inelastic
interaction in ternary collisions, and investigated interaction dynamics of two-humped Dirac solitary
waves with or without an initial phase shift.

In studying the interaction dynamics of the Dirac solitary waves, the physical solutions are usually very
singular in fairly localized regions. To resolve these large solution variations, numerical simulations require
extremely fine meshes on those small localized portions of the physical domain. They will become very expen-
sive if a uniform fine mesh is used. Otherwise, the numerical wave will incorrectly propagate due to under-res-
olution of the waves. Hence it is very necessary to develop an effective adaptive grid method for the NLD
model. Successful implementation of an adaptive strategy can increase accuracy of numerical approximation
and also decrease computational costs.

Adaptive moving mesh methods have important applications in solving partial differential equations
(PDEs). Up to now, there have been important progresses, including the variational approach of Winslow
[47], Brackbill and Saltzman [11,12], Dvinsky [18] and Li et al. [25,26]; moving finite element methods of Miller
and Miller [29], Davis and Flaherty [16], and Beckett et al. [10]; and moving mesh PDEs of Cao et al. [13,14],
Li and Petzold [27], Ceniceros and Hou [15] and Ren and Wang [33] as well as [45], etc. Harten and Hyman
[21] began the earliest study of the self-adaptive moving mesh methods to improve resolution of discontinuous
solutions of hyperbolic equations. After their work, many other moving mesh methods in this direction have
been proposed based on combining the variational grid methods with high resolution shock capturing meth-
ods. They include works of Azarenok et al. [9], Fazio and LeVeque [19], Liu et al. [28], Saleri and Steinberg
[34], Stockie et al. [39], Tang et al. [40–42], Zegeling et al. [48,49] and Zhang [50]. We refer the readers to a
recent paper [43] for a detailed review. However, to our knowledge, there is no any research work on adaptive
moving mesh methods for the NLD model in the literatures.

The aim of this paper is to present an efficient adaptive mesh redistribution method for the NLD model
based on the adaptive moving mesh method for hyperbolic conservation laws, proposed by Tang and Tang
in [41]. The present adaptive mesh algorithm will include three parts: the NLD evolution, an iterative redis-
tribution of the coarse mesh, and the local uniform refinement of the final coarse mesh. The NLD evolution
may be any appropriate high resolution finite volume scheme. While the coarse mesh redistribution is an iter-
ative procedure. In each iteration, the coarse mesh points are first iteratively redistributed by the equidistri-
bution principle, and then the scalar monitor function is updated on the resulting new coarse mesh to
improve the grid adaptivity. After the final adaptive coarse mesh is generated ideally, each coarse mesh ele-
ment is equally divided into some fine cells to give an adaptive fine mesh of the physical domain, and then
the solution vector is remapped from the initial fine mesh to the new fine mesh by the affine method. These
combinations will yield a powerful and fast NLD solver that tracks and resolves both small, local and large
solution gradients automatically. It is worth mentioning that our proposed method may be considered as a
combination of the r-refinement method and the h-refinement method and shares the same idea of the two-
level mesh movement technique of Huang et al. [23,24] and Fiedler and Trapp [20] as well as the hr-refinement
method in the literatures, see e.g. [1,2,30].

This paper is organized as follows. In Section 2 we briefly review the NLD model as well as its two exact
solitary wave solutions. In Section 3, we begin to present an adaptive moving mesh method for the NLD equa-
tion. Section 4 conducts some numerical experiments to validate the accuracy and capability of the proposed
approach. The numerical examples include binary, ternary, and quadruple collisions of the Dirac solitary
waves. Emphatically, quadruple collisions of the Dirac solitary waves are investigated for the first time. We
conclude the paper with a few remarks in Section 5.
2. Preliminaries

Consider a classical spinorial model with scalar self-interaction, described by the non-linear Lagrangian
L ¼ iwclolw� mwwþ kðwwÞ2 from which we may derive the non-linear Dirac equation (NLD)
iclolw� mwþ 2kðwwÞw ¼ 0; ð1Þ
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where i ¼
ffiffiffiffiffiffiffi
�1
p

;w is the complex conjugate of w, k and m are two real constants, and the matrices cl are de-
fined by
c0 ¼
I 0

0 �I

� �
; ck ¼

0 rk

�rk 0

� �
;

here rk with k = 1,2,3, denote the Pauli matrices. The non-linear self-coupling term ðwwÞ2 in the Lagrang-
ian allows the existence of finite energy, localized solitary waves, or extended particle-like solutions, see e.g.
[38].

We restrict our attention to the (1 + 1)-dimensional NLD model (1), and use the notations qE(x, t), qP(x, t)
and qQ(x, t) to denote the energy density, the linear momentum density and the charge density, which are
defined by
qEðx; tÞ ¼ Imðw1oxw2 þ w2oxw1Þ þ mðjw1j
2 � jw2j

2Þ � kðjw1j
2 � jw2j

2Þ2; ð2Þ
qP ðx; tÞ ¼ Imðw1oxw1 þ w2oxw2Þ; ð3Þ
qQðx; tÞ ¼ jw1j

2 þ jw2j
2
; ð4Þ
where w1 and w2 are two components of the spinor w(x, t). Then we have the (total) energy E, the linear
momentum P and the charge Q as follows
EðtÞ ¼
Z

R

qEðx; tÞdx; P ðtÞ ¼
Z

R

qP ðx; tÞdx; QðtÞ ¼
Z

R

qQðx; tÞdx; ð5Þ
which are conservative, if limjxj!+1jwj = 0 and limjxj!+1joxwj < +1 hold uniformly for t P 0.
The (1 + 1)-dimensional NLD equation (1) has two exact solutions, which will be used in our numerical

experiments. The first is the standing wave solution at x = x0 defined by
wswðx� x0; tÞ �
wsw

1 ðx� x0; tÞ
wsw

2 ðx� x0; tÞ

� �
¼

Aðx� x0Þ
iBðx� x0Þ

� �
e�iKt ð6Þ
with
AðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
k ðm2 � K2Þðmþ KÞ

q
cosh x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2 � K2Þ

q� �
mþ K cosh 2x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2 � K2Þ

q� � ; ð7Þ

BðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
k ðm2 � K2Þðm� KÞ

q
sinh x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2 � K2Þ

q� �
mþ K cosh 2x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2 � K2Þ

q� � : ð8Þ
Here 0 < K 6 m.
The second exact solution of the Dirac model (1) is the single solitary wave solution placed initially at x0

with a velocity v:
wssðx� x0; tÞ ¼ ðwss
1 ðx� x0; tÞ;wss

2 ðx� x0; tÞÞT ; ð9Þ

where
wss
1 ðx� x0; tÞ ¼

ffiffiffiffiffiffiffiffiffiffiffi
cþ 1

2

r
wsw

1 ð~x;~tÞ þ signðvÞ
ffiffiffiffiffiffiffiffiffiffiffi
c� 1

2

r
wsw

2 ð~x;~tÞ; ð10Þ

wss
2 ðx� x0; tÞ ¼

ffiffiffiffiffiffiffiffiffiffiffi
cþ 1

2

r
wsw

2 ð~x;~tÞ þ signðvÞ
ffiffiffiffiffiffiffiffiffiffiffi
c� 1

2

r
wsw

1 ð~x;~tÞ; ð11Þ
here c ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2
p

, ~x ¼ cðx� x0 � vtÞ, ~t ¼ cðt � vðx� x0ÞÞ, wsw
1 and wsw

2 are defined in (6) and sign(x) is the
sign function, which returns 1 if x > 0, 0 if x = 0 and �1 if x < 0. The solution wss(x � x0, t) represents a sol-
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Fig. 1. Dependence of qQ on K and v. Left: K = 0.9; right: K = 0.1.
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itary wave travelling from left to right if v > 0, or travelling from right to left if v < 0, and the standing wave
wsw(x � x0, t) is actually a solitary wave at rest placed at x0 or identical to wss(x � x0, t) with v = 0.

The profile of the solution (6) or (9) is strongly dependent on the parameter K:

� it is a two-humped solitary wave with two peaks whose locations are determined by

coshð2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � K2
p

~xÞ ¼ m2�K2

mK if 0 < K < m
2
;

� it becomes a one-humped solitary wave with one peak located at ~x ¼ 0 if m
2
6 K < m; and

� wss(x � x0, t) ” 0 if K = m.

Moreover, amplitude of the solitary waves also depends strongly on the velocity v: qss
Qðx� x0; tÞ ¼ cqsw

Q ð~x;~tÞ.
Fig. 1 shows that dependence, which will give different interaction dynamics. We also refer the readers to [35–
37] for more detailed investigations. It is worth noting that eihwss(x � x0, t) is still a solitary wave solution of
the (1 + 1)-dimensional Dirac model (1), if h is a constant.

For actual numerical computations, we decompose the complex function w1(x, t) and w2(x, t) into its real
and imaginary parts by writing
wiðx; tÞ ¼ wr
i ðx; tÞ þ iws

i ðx; tÞ; i ¼ 1; 2
and then rewrite the (1 + 1)-dimensional NLD model (1) in a conservative form of real variables
ou

ot
þ of ðuÞ

ox
¼ sðuÞ; ð12Þ
where u ¼ ðwr
1;w

s
1;w

r
2;w

s
2Þ

T
; sðuÞ ¼ gðx; tÞðws

1;�wr
1;�ws

2;w
r
2Þ

T , and
f ðuÞ ¼ Au �

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

0BBB@
1CCCA

wr
1

ws
1

wr
2

ws
2

0BBB@
1CCCA;
here g(x, t) :¼ m + 2k(jw2j2 � jw1j2), and jwij
2 ¼ ðwr

i Þ
2 þ ðws

i Þ
2
; i ¼ 1; 2.

3. An adaptive mesh method

This section presents an adaptive moving mesh finite volume approach for the (1 + 1)-dimensional NLD
model, which is an extension of the method introduced by Tang and Tang [41]. To increase efficiency, we only
apply the iterative grid redistribution technique to the coarse mesh, and then refine uniformly each final coarse
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mesh interval. That will yield a powerful and fast NLD solver that tracks and resolves both small, local and
large solution gradients automatically.

3.1. Coarse mesh redistribution

Let x and n denote the physical and logical coordinates, respectively. A one-to-one coordinate transforma-
tion from logical domain Xl = [0,1] to the physical domain Xp = [a,b] is denoted by
x ¼ xðnÞ; n 2 Xl:
Its inversion is denoted by
n ¼ nðxÞ; x 2 Xp:
If giving a uniform partition of the logical domain Xl such as 0 = n0 < n1 <� � �< nN = 1, (nj = j/N,
j = 0,1,2, . . . ,N), then we usually use the coordinate transformation x = x(n) to give an ‘‘adaptive’’ mesh of
the physical domain Xp: a = x0 < x1 <� � �< xN = b, where xj = x(nj), j = 0,1,2, . . . ,N. To derive the coordinate
transformation, we employ the well-known equidistribution principle, and then have
ðxxnÞn ¼ 0; n 2 Xl; ð13Þ
subject to boundary conditions x(0) = a and x(1) = b. Here, x is a positive weight function, i.e. the so-called
monitor function. A widely used monitor function is defined by
x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ajuj2 þ bjuxj2

q
: ð14Þ
Solving (13) will end up with a desired mesh map x = x(n). In this work, we use an iteration method, such as
Gauss–Siedel iteration method, to solve the mesh redistribution equation (13), i.e.
x x½m�
jþ1

2

� �
x½m�jþ1 � x½mþ1�

j

� �
� x x½m�

j�1
2

� �
x½mþ1�

j � x½mþ1�
j�1

� �
¼ 0 ð15Þ
for j = 1,2, . . .N � 1, where m = 0,1, . . .
For most implementations of the mesh redistribution, the iteration number m in (15) is usually controlled

under a tolerance denoted by l, in order to save CPU time. However, if the wave propagation speed becomes
large, then the equidistribution principle cannot be perfectly preserved in numerical computations, unless we
take a very large value of l. To overcome the above disadvantage, we employ a local uniform refinement tech-
nique, that is to say, we only redistribute coarse mesh points by (15) iteratively, and then divide the final coarse
cell (i.e. m = l) into some locally equal fine cells. Assume N = N0N1, where N0 and N1 are two positive integers,
and use {xj, j = 0,N0,2N0, . . . ,N1N0} to denote the coarse mesh. Then applying the above iterative mesh redis-
tribution, e.g. (15), to the coarse mesh {xj, j = 0,N0,2N0, . . . ,N1N0} gives
x x½m�
jþN0

2

� �
x½m�jþN0

� x½mþ1�
j

� �
� x x½m�

j�N0
2

� �
x½mþ1�

j � x½mþ1�
j�N0

� �
¼ 0 ð16Þ
for j = N0,2N0, . . . , (N1 � 1)N0, where m = 0,1, . . . ,l � 1.

3.2. Interpolation of the monitor function on the coarse mesh

After each iteration of the mesh redistribution, the moving mesh finite volume approach of Tang and Tang

[41] should remap the solution u on the new mesh x½mþ1�
j

n oN

j¼0
by a high resolution conservative interpolation,

according to the known data x½m�j

n oN

j¼0
as well as u

½m�
jþ1

2

n oN�1

j¼0
, and then calculate x½mþ1�

jþ1
2

for next iteration. It is

proved that such remapping phase is successful and robust in capturing strong discontinuities (shock waves,
etc.) in fluid flows.

However, since the iterative grid redistribution is solely implemented on the coarse mesh in the present
algorithm, the remapping phase may be operated on the same coarse mesh. To further save the computational
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cost, we will directly remap the scalar monitor function x on the coarse mesh fx½mþ1�
j ; j ¼ 0;N 0; 2N 0; . . . ;N 1N 0g

instead of the solution vector u = (u1,u2,u3,u4)T.

Assume that we have solved (16) to yield fx½mþ1�
j ; j ¼ 0;N 0; 2N 0; . . . ;N 1N 0g. Since it is not important whether

the function x is conservative, we may consider x½m�
jþN0

2

as an approximation of x x½m�
jþN0

2

� �
and remap x by a

simple linear interpolation such as
x½m�
jþN0

2

¼ x½0�
kþN0

2

þ
x½0�

kþN0
2

� x½0�
k�N0

2

x½0�
kþN0

2

� x½0�
k�N0

2

x½m�
jþN0

2

� x½0�
kþN0

2

� �
; ð17Þ� �
if x½m�
jþN0

2

2 x½0�
k�N0

2

; x½0�
kþN0

2

, where m P 1. It is worth noting that we always interpolate the monitor function x½m�
jþN0

2

by using the ‘‘initial’’ data x½0�
jþN0

2

.

Remark 3.1. The advantage of the interpolation (17) is that at each time level we only need to compute the
‘‘initial’’ first-order divided difference, see (17), during the iterative redistribution of the coarse mesh.

Remark 3.2. The initial value of the monitor function x½0�
jþN0

2

is computed by using a discrete form of (14) with
the volume average of u

½0�
jþ1

2

over the fine cell, i.e.
u
½0�
jþN0

2

¼ 1

Dx½0�
jþN0

2

XN0

l¼1

Dx½0�
jþl

2

u
½0�
jþl

2

: ð18Þ
Remark 3.3. We may also consider x
jþN0

2
as cell averages of the monitor function x over the cell ½xj; xjþN0

�, and
then employ the interpolation approach as introduced by Tang et al. [41] to remap the monitor function x on
the new mesh fx½mþ1�

j ; j ¼ 0;N 0; 2N 0; . . . ; ðN 1 � 1ÞN 0g as follows
Dx½mþ1�
jþN0

2

x½mþ1�
jþN0

2

¼ Dx½m�
jþN0

2

x½m�
jþN0

2

� ðccxÞ½m�jþN0
� ðccxÞ½m�j

� �
ð19Þ
for j = 0,N0,2N0, . . . , (N1 � 1)N0, where Dx
jþN0

2
¼ xjþN0

� xj, and
ðccxÞj ¼ cj

2
ðxj;R þ xj;LÞ �

jcjj
2
ðxj;R � xj;LÞ; ð20Þ
here cj ¼ x½m�j � x½mþ1�
j , and
xj;L ¼ x
j�N0

2
þ 1

2
S

j�N0
2
; xj;R ¼ x

jþN0
2
� 1

2
S

jþN0
2
:

The slope limiter Sj�1
2

is an approximation of the derivative ox
on at n ¼ nj�1

2
. In our computations, we employ the

van Leer limiter [44]
S
jþN0

2
¼
�

sign Dx
jþN0

2

� �
þ sign Dx

j�N0
2

� �� jDx
jþN0

2
Dx

j�N0
2
j

jDx
jþN0

2
j þ jDx

j�N0
2
j þ e

;

where Dx
jþN0

2
¼ x

jþ3N0
2

� x
jþN0

2
, and 0 < e� 1 is used to avoid that the denominator becomes zero.
3.3. Local uniform refinement and remapping the solution

Assuming that the final adaptive coarse mesh fx½l�j ; j ¼ 0;N 0; 2N 0; . . . ; ðN 1 � 1ÞN 0g has been generated, we

divide equally each coarse mesh interval or element ½x½l�j ; x
½l�
jþN0
�; j ¼ 0;N 0; . . . ; ðN 1 � 1ÞN 0, into N0 fine mesh

cells and yield the fine grid points fx½l�i ; i ¼ j� N 0; j� N 0 þ 1; . . . ; j� 1g; j ¼ N 0; 2N 0; . . . ;N 1N 0. As a result,

we get an adaptive fine mesh of the physical domain Xp: fx½l�j g
N
j¼0. Fig. 2 displays the procedure of the fine mesh
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Fig. 2. The fine mesh redistribution with a local uniform refinement. N0 = 3.
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redistribution with a local uniform refinement, where N0 = 3, symbol ‘‘s’’ denotes the coarse mesh point
which is first redistributed by solving mesh redistribution equation iteratively, and symbol ‘‘·’’ is the mesh
point obtained by a local uniform refinement. It is worth mentioning that our method may be considered
as a combination of the r-refinement method and the h-refinement method and shares the same idea of the
two-level mesh movement technique of Huang et al. [23,24] and Fiedler and Trapp [20] as well as the hr-refine-
ment method in the literatures, see e.g. [1,2,30].

Now we need to remap the solution vector u from the old fine mesh fx½0�j g
N
j¼0 :¼ T ½0� to the new fine mesh

T[l]. Each cell of T[l] corresponds uniquely to a cell of T[0] by xjðsÞ ¼ x½0�j þ sdx½0�j where dx½0�j :¼ x½l�j � x½0�j ,

s 2 [0,1]. There is an affine map denoted by x = x(n,s) between the two cells ½x½0�j ; x
½0�
jþ1� and ½x½l�j ; x

½l�
jþ1�. The

profile of u on Xp will not move, although the nodes of the mesh have been moved to new locations. Hence
u, as the function of x at a fixed time t, is independent on the parameter s. That is
ou

os
¼ 0; s 2 ½0; 1�: ð21Þ
During the movement of the mesh, u may be expressed as
u ¼ uðxÞ ¼ uðx; sÞ ¼ uðxðn; sÞ; sÞ:

Integrating (21) over [xj(s), xj+1(s)] gives
d

ds

Z xjþ1ðsÞ

xjðsÞ
udx� ðxsuÞjþ1 þ ðxsuÞj ¼ 0; s 2 ½0; 1�: ð22Þ
This equation will be solved by a high-resolution shock-capturing scheme combined with a second-order
Runge–Kutta time discretization, which is described in the subsequent section.

In Section 4, we will validate that the fine mesh redistribution with the local uniform refinement is more
powerful and faster than the original adaptive mesh method introduced in [41].

3.4. The NLD solver on a fixed mesh

Assume that we have obtained the new mesh T ½l� :¼ fx½l�j g
N
j¼0. In the following, we solve (12) on the fixed

non-uniform mesh T[l], that is to say, x½l�j is independent on t 2 [tn, tn + Dtn).

Integrating (12) over the control volume ½x½l�j ; x
½l�
jþ1� leads to the following semi-discrete finite volume method
x½l�jþ1 � x½l�j

� � dujþ1
2
ðtÞ

dt
¼ �ðf̂ jþ1 � f̂ jÞ þ

Z x½l�
jþ1

x½l�j

sðuÞdx; ð23Þ
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where f̂ j is some appropriate numerical flux satisfying
f̂ j ¼ f̂ ðuj;L; uj;RÞ; f̂ ðu; uÞ ¼ f ðuÞ: ð24Þ

An example of the numerical flux is the Lax–Friedrichs type flux:
f̂ ðv;wÞ ¼ 1

2
½f ðwÞ þ f ðvÞ � rðw� vÞ�; ð25Þ
where r P maxu k of
ou

	 
�� ��� 
. In (24), uj,L and uj,R are defined by
uj;L ¼ uj�1
2
þ Sj�1

2
x½l�j �

x½l�j�1 þ x½l�j

2

 !
; ð26Þ

uj;R ¼ ujþ1
2
þ Sjþ1

2
x½l�j �

x½l�j þ x½l�jþ1

2

 !
: ð27Þ
The slope limiters Sjþ1
2
¼ S1

jþ1
2
; S2

jþ1
2
; S3

jþ1
2
; S4

jþ1
2

� �T
in (26) and (27) are defined by
Si
jþ1

2
¼ sign Si;þ

jþ1
2

� �
þ sign Si;�

jþ1
2

� �� � Si;þ
jþ1

2

Si;�
jþ1

2

��� ���
Si;þ

jþ1
2

��� ���þ Si;�
jþ1

2

��� ���þ e
; i ¼ 1; 2; 3; 4;
where 0 < e� 1 is used to avoid that the denominator becomes zero. Here,
Sþjþ1
2
¼

ujþ3
2
� ujþ1

2

x½l�
jþ3

2

� x½l�
jþ1

2

; S�jþ1
2
¼

ujþ1
2
� uj�1

2

x½l�
jþ1

2

� x½l�
j�1

2

:

Since
Z x½l�
jþ1

x½l�j

sðuÞdx 	 Dx½l�
jþ1

2

s ujþ1
2

� �
: ð28Þ
Thus Eq. (23) can be further approximated as follows
d

dt
ujþ1

2
¼ � 1

Dx½l�
jþ1

2

f̂ jþ1 � f̂ j

� �
þ s
�

ujþ1
2

�
: ð29Þ
The semi-discrete scheme (29) gives a system of ordinary differential equations with respect to the unknown
vector u, which may be written in a matrix-operator form
du

dt
¼ Lðt; uÞ: ð30Þ
We apply an explicit second-order accurate Runge–Kutta method to discretization of the time derivative in
(30) or (29). The Runge–Kutta method we consider is
K1 ¼ DtnLðtn; u
nÞ;

K2 ¼ DtnLðtn þ 1
2
Dtn; u

n þ 1
2
K1Þ;

unþ1 ¼ un þ K2:

8><>: ð31Þ
The semi-discrete MUSCL-type finite volume method (29) and (31), which is of second order accuracy in
smooth regions in the sense of the truncation error, will be applied to (22) and the NLD Eq. (1) in our com-
putations. When the above method is applied to (22), it is just marched forward in s by one unit step size, i.e.
Ds = 1. Note that (xs)j and xj s ¼ 1

2

	 

are specified as
ðxsÞj ¼ x½l�j � x½0�j ; xj s ¼ 1

2

� �
¼ 1

2
x½l�j þ x½0�j

� �
:
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The time step-size for the NLD equation (1) is determined by the CFL condition
Dtn 6 cfl
min Dx½l�

jþ1
2

n o
r

; max k
of

ou

� ����� ����� �
6 r; ð32Þ
where cfl denotes the CFL number.

3.5. Solution procedure

Our solution procedure is based on three parts: the NLD evolution, the iterative mesh redistribution of the
coarse mesh, and the local uniform refinement of the final coarse mesh. That procedure can be illustrated by
the following flowchart.
Algorithm 1

Step 1. Compute the cell average of the initial data u0
jþ1

2

n o
and give a uniform mesh

�
x0

j

N

j¼0
at t = 0.

Step 2. For j = 0,N0,2N0, . . . ,N1N0, define x½0�j :¼ xn
j , x½0�

jþN0
2

:¼ xn
jþN0

2

, where n P 0. For m = 0,1, . . ., do
the following:

(a) Move the coarse mesh
n

x½m�j

o
to
n

x½mþ1�
j

o
by solving (16).

(b) Compute

�
x½mþ1�

jþN0
2

�
by using (17) or (19).

(c) Repeat the updating procedure (a) and (b) for a fixed number of iterations l or until

ix[m+1] � x[m]i 6 e where iÆi is the discrete norm on the coarse mesh.

Step 3. Divide equally the coarse mesh interval
h
x½l�j�N0

; x½l�j

i
into N0 fine cells, let xnþ1

j :¼ x½l�j , and remap

the solution u from the old fine mesh
�

xn
j

N

j¼0
to the new fine mesh

�
xnþ1

j

N

j¼0
by the affine method (22).

Step 4. Evolve the Dirac equation using the high-resolution finite volume method on the fine mesh�
xnþ1

j

N

j¼0
.

Step 5. Iftn+1 < T, then go to Step 2. Otherwise, output the result and stop.
4. Numerical experiments

This section will conduct numerical experiments to demonstrate the performance and efficiency of the adap-
tive mesh method proposed in the last section. All computations work in dimensionless units, or equivalently,
take m = 1 and k ¼ 1

2
, and adopt the non-reflecting boundary conditions at artificial boundaries. The CFL

number cfl and parameters N1 and l are taken as 0.5, 100 and 10, respectively, unless stated otherwise.
Our codes are run on an IBM laptop (Pentium-M, 1.8 GHz) under the Linux environment. We define the grid
density by 1/Dxj+1/2 to depict the grid quality.

For convenience, we will use the notations Algorithm 0 and Algorithm 1 to denote two different adaptive
moving mesh methods, which are

� Algorithm 0 – the adaptive moving mesh method of Tang and Tang [41], in which the fine mesh is iteratively

redistributed and the solution vector is remapped on the resulting new fine mesh
n

x½mþ1�
j

oN

j¼1
from the old

mesh
n

x½m�j

oN

j¼1
in each iteration.



H. Wang, H. Tang / Journal of Computational Physics 222 (2007) 176–193 185
� Algorithm 1 – the present method with the local uniform refinement, in which the coarse mesh is just redis-
tributed iteratively and the monitor function x is remapped on the resulting new coarse meshn

x½mþ1�
j ; j ¼ 0;N 0; . . . ;N 1N 0

o
from the old mesh fx½m�j ; j ¼ 0;N 0; . . . ;N 1N 0g in each iteration. We yield the

adaptive fine mesh
n

x½0�j

oN

j¼1
of the physical domain Xp by the local uniform refinement.

Example 4.1 (Single travelling solitary wave). The first example is to simulate travel of a two-humped Dirac
solitary wave. Since the exact single soliton solution (9) to the (1 + 1)-dimensional NLD equation (1) is
known, we can compare our numerical solutions with the exact solution, and then evaluate the efficiency of
our proposed algorithm. Here we take the monitor function (14) with a = 10 and b = 20 and K = 0.1, x0 = �5,
v = 0.1. The physical domain Xp is considered as [�25,25].

Tables 1 and 2 give numerical errors at t = 100 and convergence rates for Algorithm 0 and Algorithm 1.
Those estimated errors are defined by
Table
Examp

N

l1-erro

l2-erro

l1-erro

CPU t
l1-error :¼ 1

4

X4

i¼1

X
j

ðue
i Þjþ1

2
� ðuc

i Þjþ1
2

��� ���ðxjþ1 � xjÞ;

l2-error :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX4

i¼1

X
j

ðue
i Þjþ1

2
� ðuc

i Þjþ1
2

��� ���2ðxjþ1 � xjÞ

vuut ;

l1-error :¼ max
i;j

ðue
i Þjþ1

2
� ðuc

i Þjþ1
2

��� ���n o
;

where ðue
1; u

e
2; u

e
3; u

e
4Þjþ1

2
denote the cell averages of the exact solution ue over [xj,xj+1], while ðuc

1; u
c
2; u

c
3; u

c
4Þ

T is the

computed solution. We see that Algorithm 1 is more accurate and less time-consuming than Algorithm 0. Con-
cretely, the accuracy of Algorithm 0 decreases as N increases, while Algorithm 1 gives a uniform third-order
rate of convergence independent on N. The results show that Algorithm 1 may give a super-convergent solu-
tion and is not insensitive to smoothness and size of the mesh. By contraries, Algorithm 0 is strongly sensitive
to smoothness and size of the mesh. Moreover, Algorithm 1 may save about 86% cost in the present compu-
tations, compared to Algorithm 0.

To further validate the performance and efficiency of Algorithm 1, we present the mesh densities (solid line)
and the charge densities (black dot) in Figs. 3 and 4, obtained by using Algorithm 0 and Algorithm 1, where
scale of the left axis is for the charge density and the right one is for the mesh density. From the left figure of
Fig. 3, we see that the grid points at t = 100 redistributed by Algorithm 0 mainly cluster in the vicinity of the
left peak of the Dirac solitary wave when the iterative tolerance l equals to 10. Thus the mesh is not equally
distributed. If we increase l up to 30, the redistribution of the mesh points has been improved in the numerical
computations, see the right figure of Fig. 3, but we have sacrificed quite a bit CPU time. The result given in the
left figure of Fig. 4 shows that Algorithm 1 implements easily and fast the equidistribution principle, and the
mesh density of Algorithm 1 preserves symmetry just as two peaks of the Dirac solitary wave are symmetric. So
the quality of the adaptive mesh generated by Algorithm 1 is very perfect. The right plot of Fig. 4 gives the time
1
le 4.1. Numerical errors and convergence rates of Algorithm 0 at t = 100

100 200 400 800 1600 3200

r order 3.786 5.178e�1 7.565e�2 1.279e�2 3.465e�3 1.274e�03
– 2.87 2.78 2.56 1.88 1.44

r order 2.992 4.089e�1 5.909e�2 9.840e�3 2.573e�3 9.477e�04
– 2.87 2.79 2.59 1.94 1.44

r order 1.004 1.309e�1 1.949e�2 3.670e�3 1.077e�3 3.979e�04
– 2.94 2.75 2.41 1.77 1.44

ime (s) 6.11 21.46 83.76 335.69 1325.50 4940.00



Table 2
Example 4.1. Numerical errors and convergence rates of Algorithm 1 at t = 100

N 100 200 400 800 1600 3200

l1-error order 3.782 4.725e�1 5.848e�2 7.331e�3 9.293e�4 1.184e�04
– 3.00 3.01 3.00 2.98 2.97

l2-error order 2.989 3.715e�1 4.504e�2 5.463e�3 6.597e�4 7.775e�05
– 3.01 3.04 3.04 3.05 3.08

l1-error order 1.003 1.156e�1 1.435e�2 1.775e�3 2.177e�4 2.858e�05
– 3.12 3.01 3.02 3.03 2.93

CPU time (s) 1.04 3.43 12.20 48.89 183.70 707.75
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Fig. 3. Example 4.1. The mesh densities (solid line) and charge densities (black dot) at t = 100 obtained by using Algorithm 0. K = 0.5,
v = 0.1, x0 = �5 and N = 800. Left: l = 10; right: l = 30.
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Fig. 4. Example 4.1. The results given by Algorithm 1. K = 0.5, v = 0.1, x0 = �5, N = 800 and l = 10. Left: the charge density (block dot)
and the mesh density (solid line) at t = 100; right: the time evolution of the charge Q and energy E.
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evolution of the charge Q and energy E, where scale of the left axis is for Q and the right one is for E, and
shows that they are approximately conservative, because their relative errors are 0.02% and 0.008%,
respectively.
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Figs. 5 and 6 give dependence of the mesh density, the CPU time (‘‘+’’, right axis) and the l2-error (‘‘
’’, left
axis) of Algorithm 1 on the parameter N1, where t = 100 and N = 800 and 1600, respectively. The results show
that the recorded CPU time and l2-error are monotonically increasing and convex functions with respect to
N1, respectively; the mesh quality may be improved very well when N1 decreases properly. When
N1 2 [25, 400], at least in the present example, Algorithm 1 is almost optimal, that is to say, its CPU time
and error are the relatively lowest, and the mesh quality is the best. It is worth noting that the optimal choice
of the parameter N1 is not too sensitive with respect to N.

Example 4.2 (Binary collisions). The second example is to investigate collisions of two one-humped solitary
waves with a phase shift of p, that is to say, we solve (1) subject to the initial data
wðx; 0Þ ¼ wssðx� xl; 0Þ � wssðx� xr; 0Þ ð33Þ

with Kl = Kr = 0.5, vl = 0.1, vr = �0.9 and xr = �xl = 10. Extensive studies of binary collisions of Dirac sol-
itary waves have been conducted in [36,37]. Here we take the physical domain Xp = [�40,40], a = 10, b = 20
and N = 800. For comparison, Fig. 7 gives the time evolution of the charge density qQ and the total energy E
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Fig. 7. Example 4.2. The time evolution of the charge density qQ (left) and the total energy E and charge Q (right), obtained by
Algorithm 1.
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as well as the charge Q obtained by using Algorithm 1. The results show clearly the interaction dynamics of two
Dirac solitary waves, and are comparable with ones obtained by using a higher-order RKDG method on a
very fine uniform mesh, see Fig. 4 in [37]. For comparison, Fig. 8 gives charge densities (black dot) and grid
densities (solid line) at t = 50 obtained by using Algorithm 0 (left) and Algorithm 1 (right). We see that the
mesh quality of Algorithm 0 is much worse than that of Algorithm 1, because grid points clustering near
the left peak (which is sharp) are not enough. As a result, the left peak, see left figure of Fig. 8, is lower
and moving more slowly than one in right figure. The CPU times are 140 s for Algorithm 0 and 45 s for Algo-

rithm 1, respectively. It means that about 67.86% cost is saved in the computation by using Algorithm 1.

Example 4.3 (Ternary collisions). The third example is to consider collisions of three in-phase Dirac solitary
waves. The initial data are specified as follows:
0
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4

-40

Fig. 8
wðx; 0Þ ¼ wssðx� xl; 0Þ þ wssðx� xm; 0Þ þ wssðx� xr; 0Þ ð34Þ

with Kl = Kr = 0.9, Km = 0.1, vl = �vr = 0.9 and vm = 0. That means that the initial waves are in phase, and
the left and right waves are one-humped and the middle one is two-humped. We take the physical domain
Xp = [�25,25], a = b = 10 and N = 1600.
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. Example 4.2. The charge densities (black dot) and the grid densities (solid line) at t = 50. Left: Algorithm 0; right: Algorithm 1.
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Fig. 9 shows the time evolution of the charge density qQ obtained by Algorithm 1, and a comparison of the
charge densities at t = 25 obtained by using Algorithm 1 with N = 1600 (black dots) and the uniform mesh
method with N = 10,000 (solid line). We see that some small waves are generated after the main interaction
around t = 10 so that the collapse phenomenon happens. But the solution of Algorithm 1 is still in accordance
with the uniform fine mesh solution.

To compare Algorithm 0 with Algorithm 1, we present the mesh densities and the charge densities at t = 25
in Fig. 10, where small black dots stand for the charge density (left axis), and solid line presents mesh density
(right axis). From the left figure of Fig. 10, we see that the mesh density of Algorithm 0 becomes quite a bit
singular around x = �13, �11 and 13, and non-symmetric. The mesh points are clustered overfull in the
interval [�10,10]. The right figure of Fig. 10 shows that the mesh density of Algorithm 1 is approximately
symmetric, and much smoother and better than that of Algorithm 0.

To further validate the proposed method, we present two close-ups of the charge densities in Fig. 11, in
which symbol ‘‘·’’, block dot, and solid line stand for the results obtained by using Algorithm 0, Algorithm 1,
and the uniform mesh method with N = 10,000, respectively. The left plot of Fig. 11 shows detailed wavelets
moving to the left boundary of the physical domain. The right plot in Fig. 11 shows details of the peaks of the
middle two-humped wave. From the left figure of Fig. 11, we see that Algorithm 0 cannot resolve small
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Fig. 9. Example 4.3. Kl = Kr = 0.9, Km = 0.1, vl = �vr = 0.9 and vm = 0. Left: The time evolution of the charge density of Algorithm 1;
right: The charge densities of Algorithm 1 with N = 1600 (black dots) and the uniform mesh method with N = 10,000 (solid line).
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oscillatory waves. Although the mesh of Algorithm 1 in the interval [�10,10] is sparser than that of
Algorithm 0, see Fig. 10, but their solutions are accordant in that interval, see the right figure of Fig. 11. Thus it
is unnecessary to cluster too many mesh points there. Even though Algorithm 1 damps the wavelets, its results
are in accordance with the results obtained on a uniform mesh with N = 10,000. The CPU times are 328.45 s
for Algorithm 0 and 80.60 s for Algorithm 1, respectively.

Example 4.4 (Quadruple collisions). The final example is to study quadruple collisions of the Dirac waves. The
initial data are given as
0
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Fig. 12
1; righ
wðx; 0Þ ¼ �wssðx� xl; 0Þ þ wssðx� xlm; 0Þ þ wssðx� xrm; 0Þ � wssðx� xr; 0Þ ð35Þ

with vl = vlm = vrm = vr = 0, Kl = Kr = Klm = Krm = 0.5, xr = �xl = 15 and xrm = �xlm = 5.

We take the physical domain Xp = [�50,50], a = b = 10 and N = 1200, Fig. 12 gives the time evolution of
the charge density qQ obtained by Algorithm 1, and a comparison of the charge densities at t = 25 obtained by
using Algorithm 1 with N = 1200 (black dots) and the uniform mesh method with N = 10,000 (solid line). The
results show clearly the interaction dynamics of four Dirac solitary waves: four main interactions of the Dirac
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. Example 4.4. vl = vlm = vrm = vr = 0 and Kl = Kr = K lm = Krm = 0.5. Left: The time evolution of the charge density of Algorithm

t: The charge densities of Algorithm 1 with N = 1200 (black dots) and the uniform mesh method with N = 10,000 (solid line).
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waves happen around t = 50, 120 and 180, respectively. In connection with each main interaction, the overlap
happens, in other words, the interactions are all inelastic. The right figure of Fig. 12 shows that the solution of
Algorithm 1 is in accord with the uniform fine mesh solution. The CPU times are 472.93 s for Algorithm 0 and
79.81 s for Algorithm 1, respectively. It means that about 85.65% cost is saved in the computation by using
Algorithm 1.
5. Remarks and conclusions

In this paper, we have proposed a highly efficient adaptive mesh method for solving the (1 + 1)-dimensional
non-linear Dirac (NLD) equation (1). The algorithm was formed by three main parts: the NLD evolution, the
iterative redistribution of the coarse mesh, and the local uniform refinement of the final coarse mesh as well as
the remapping phase of the solution vector.

At each time level, the equidistribution principle was first employed to iteratively redistribute coarse mesh
points. In the iterative coarse mesh redistribution, the scalar monitor function was interpolated on the coarse
mesh instead of the solution vector, which was considered in [41]. After the final adaptive coarse mesh was
generated ideally, each coarse mesh interval was equally divided into some uniform fine cells to give the adap-
tive fine mesh of the physical domain. Then the solution vector was remapped from the old fine mesh to the
new fine mesh by marching the remapping solver forward in the parameter or pseudo-time by one unit step
size. Finally, the governing equations were solved by using a high resolution shock-capturing method over
a fixed quadrate control volume in the space and time domain. Our proposed method may be considered
as a combination of the r-refinement method and the h-refinement method and shares the same idea of the
two-level mesh movement technique of Huang et al. [23,24] and Fiedler and Trapp [20] as well as the hr-refine-
ment method in the literatures.

Extensive numerical experiments have been presented to demonstrate that the proposed adaptive mesh
method is much more efficient and faster than the method of [41], may give third-order rates of convergence
and yields a powerful and fast NLD solver that tracks and resolves both small, local and large solution gra-
dients automatically. It is worth noting that quadruple collisions of the Dirac solitary waves are studied for the
first time.

In future, we will extend the present method to multidimensional Dirac model and conduct research in the-
oretical and applied analysis of the adaptive mesh methods.
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[6] A. Alvarez, A.F. Rañda, Blow-up in nonlinear models of extended particles with confined constituents, Phys. Rev. D 38 (1988) 3330–

3333.
[7] A. Alvarez, M. Soler, Energetic stability criterion for a nonlinear spinorial model, Phys. Rev. Lett. 50 (1983) 1230–1233.
[8] A. Alvarez, M. Soler, Stability of the minimum solitary wave of a nonlinear spinorial model, Phys. Rev. D 34 (1986) 644–645.



192 H. Wang, H. Tang / Journal of Computational Physics 222 (2007) 176–193
[9] B.N. Azarenok, S.A. Ivanenko, T. Tang, Adaptive mesh redistribution method based on Godunov’s scheme, Commun. Math. Sci. 1
(2003) 152–179.

[10] G. Beckett, J.A. Mackenzie, M.L. Robertson, An r-adaptive finite element method for the solution of the two-dimensional phase-field
equations, Commun. Comput. Phys. 1 (2006) 805–826.

[11] J.U. Brackbill, An adaptive grid with directional control, J. Comput. Phys. 108 (1993) 38–50.
[12] J.U. Brackbill, J.S. Saltzman, Adaptive zoning for singular problems in two dimensions, J. Comput. Phys. 46 (1982) 342–368.
[13] W.M. Cao, W.Z. Huang, R.D. Russell, A study of monitor functions for two-dimensional adaptive mesh generation, SIAM J. Sci.

Comput. 20 (1999) 1978–1999.
[14] W.M. Cao, W.Z. Huang, R.D. Russell, An r-adaptive finite element method based upon moving mesh PDEs, J. Comput. Phys. 149

(1999) 221–244.
[15] H.D. Ceniceros, T.Y. Hou, An efficient dynamically adaptive mesh for potentially singular solutions, J. Comput. Phys. 172 (2001)

609–639.
[16] S.F. Davis, J.E. Flaherty, An adaptive finite element method for initial-boundary value problems for partial differential equations,

SIAM J. Sci. Stat. Comput. 3 (1982) 6–27.
[17] J. De Frutos, J.M. Sanz-serna, Split-step spectral schemes for nonlinear Dirac systems, J. Comput. Phys. 83 (1989) 407–423.
[18] A.S. Dvinsky, Adaptive grid generation from harmonic maps on Riemannian manifolds, J. Comput. Phys. 95 (1991) 450–476.
[19] R. Fazio, R. LeVeque, Moving-mesh methods for one-dimensional hyperbolic problems using CLAWPACK, Comp. Math. Appl. 45

(2003) 273–298.
[20] B.H. Fiedler, R.J. Trapp, A fast dynamic grid adaption scheme for meteorological flows, Mon. Weather Rev. 121 (1993) 2879–2888.
[21] A. Harten, J.M. Hyman, Self-adjusting grid methods for one-dimensional hyperbolic conservation laws, J. Comput. Phys. 50 (1983)

235–269.
[22] J.L. Hong, C. Li, Multi-symplectic Runge–Kutta methods for nonlinear Dirac equations, J. Comput. Phys. 211 (2006) 448–472.
[23] W.Z. Huang, Practical aspects of formulation and solution of moving mesh partial differential equations, J. Comput. Phys. 171 (2001)

753–755.
[24] J. Lang, W.M. Cao, W.Z. Huang, R.D. Russell, A two-dimensional moving finite element method with local refinement based on a

posteriori error estimates, Appl. Numer. Math. 46 (2003) 75–94.
[25] R. Li, T. Tang, P.W. Zhang, Moving mesh methods in multiple dimensions based on harmonic maps, J. Comput. Phys. 170 (2001)

562–588.
[26] R. Li, T. Tang, P.W. Zhang, A moving mesh finite element algorithm for singular problems in two and three space dimensions, J.

Comput. Phys. 177 (2002) 365–393.
[27] S. Li, L. Petzold, Moving mesh methods with upwinding schemes for time-dependent PDEs, J. Comput. Phys. 131 (1997) 368–377.
[28] F. Liu, S. Ji, G. Liao, An adaptive grid method and its application to steady Euler flow calculations, SIAM J. Sci. Comput. 20 (1998)

811–825.
[29] K. Miller, R.N. Miller, Moving finite element. I, SIAM J. Numer. Anal. 18 (1981) 1019–1032.
[30] J.T. Oden, T. Strouboulis, P. Devloo, Adaptive finite element methods for the analysis of inviscid compressible flow. I. Fast

refinement/unrefinement and moving mesh methods for unstructured meshes, Comput. Methods Appl. Mech. Eng. 59 (1986) 327–
362.
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